166 research outputs found

    Electric field formulation for thin film magnetization problems

    Full text link
    We derive a variational formulation for thin film magnetization problems in type-II superconductors written in terms of two variables, the electric field and the magnetization function. A numerical method, based on this formulation, makes it possible to accurately compute all variables of interest, including the electric field, for any value of the power in the power law current-voltage relation characterizing the superconducting material. For high power values we obtain a good approximation to the critical state model solution. Numerical simulation results are presented for simply and multiply connected films, and also for an inhomogeneous film.Comment: 15 p., submitte

    Lakes and rivers in the landscape: A quasi-variational inequality approach

    Get PDF

    Nonlinear Dynamics of Aeolian Sand Ripples

    Full text link
    We study the initial instability of flat sand surface and further nonlinear dynamics of wind ripples. The proposed continuous model of ripple formation allowed us to simulate the development of a typical asymmetric ripple shape and the evolution of sand ripple pattern. We suggest that this evolution occurs via ripple merger preceded by several soliton-like interaction of ripples.Comment: 6 pages, 3 figures, corrected 2 typo

    3D modeling of magnetic atom traps on type-II superconductor chips

    Get PDF
    Magnetic traps for cold atoms have become a powerful tool of cold atom physics and condense matter research. The traps on superconducting chips allow one to increase the trapped atom life- and coherence time by decreasing the thermal noise by several orders of magnitude compared to that of the typical normal-metal conductors. A thin superconducting film in the mixed state is, usually, the main element of such a chip. Using a finite element method to analyze thin film magnetization and transport current in type-II superconductivity, we study magnetic traps recently employed in experiments. The proposed approach allows us to predict important characteristics of the magnetic traps (their depth, shape, distance from the chip surface, etc.) necessary when designing magnetic traps in cold atom experiments.Comment: Submitted to Superconductor Science and Technolog

    On the energy-based variational model for vector magnetic hysteresis

    Get PDF
    We consider the quasi-static magnetic hysteresis model based on a dry-friction like representation of magnetization. The model has a consistent energy interpretation, is intrinsically vectorial, and ensures a direct calculation of the stored and dissipated energies at any moment in time, and hence not only on the completion of a closed hysteresis loop. We discuss the variational formulation of this model and derive an efficient numerical scheme, avoiding the usually employed approximation which can be inaccurate in the vectorial case. The parameters of this model for a nonoriented steel are identified using a set of first order reversal curves. Finally, the model is incorporated as a local constitutive relation into a 2D finite element simulation accounting for both the magnetic hysteresis and the eddy current

    Stationary quasivariational inequalities with gradient constraint and nonhomogeneous boundary conditions

    Get PDF
    Publicado em "From particle systems to partial differential equations. Part 2. (Springer proceedings in mathematics & statistics, vol. 75). ISBN 978-3-642-54270-1We study existence of solution of stationary uasivariational inequalities with gradient constraint and nonhomogeneous boundary condition of Neumann or Dirichlet type. Through two different approaches, one making use of a fixed point theorem and the other using a process of regularization and penalization, we obtain different sufficient conditions for the existence of solution.(undefined

    Quasivariational solutions for first order quasilinear equations with gradient constraint

    Get PDF
    We prove the existence of solutions for an evolution quasi-variational inequality with a first order quasilinear operator and a variable convex set, which is characterized by a constraint on the absolute value of the gradient that depends on the solution itself. The only required assumption on the nonlinearity of this constraint is its continuity and positivity. The method relies on an appropriate parabolic regularization and suitable {\em a priori} estimates. We obtain also the existence of stationary solutions, by studying the asymptotic behaviour in time. In the variational case, corresponding to a constraint independent of the solution, we also give uniqueness results
    • …
    corecore